Resolvent estimates for non-self-adjoint operators via semi-groups

نویسنده

  • Johannes Sjöstrand
چکیده

We consider a non-self-adjoint h-pseudodifferential operator P in the semi-classical limit (h → 0). If p is the leading symbol, then under suitable assumptions about the behaviour of p at infinity, we know that the resolvent (z − P )−1 is uniformly bounded for z in any compact set not intersecting the closure of the range of p. Under a subellipticity condition, we show that the resolvent extends locally inside the range up to a distance O(1)((h ln 1 h)) from certain boundary points, where k ∈ {2, 4, ...}. This is a slight improvement of a result by Dencker, Zworski and the author, and it has recently been obtained by W. Bordeaux Montrieux in a model situation where k = 2. The method of proof is different from the one of Dencker et al, and is based on estimates of an associated semi-group. Résumé Nous considérons un opérateur h-pseudodifférentiel non-autoadjoint P dans la limite semi-classique (h → 0). Si p désigne le symbole principal, alors sous des hypothèses convenables sur le comportment de p à l’infini nous savons que la résolvante (z − P )−1 est uniformément bornée pour z dans un compact qui ne rencontre pas l’adhérence ∗Ce travail a bénéficié d’une aide de l’Agence Nationale de la Recherche portant la référence ANR-08-BLAN-0228-01

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Non-self-adjoint Differential Operators

We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...

متن کامل

AbstractAbstr GRAPH SUBSPACES AND THE SPECTRAL SHIFT FUNCTION

We extend the concept of Lifshits–Krein spectral shift function associated with a pair of self-adjoint operators to the case of pairs of (admissible) operators that are similar to self-adjoint operators. An operator H is called admissible if: (i) there is a bounded operator V with a bounded inverse such that H = V −1 HV for some self-adjoint operator H; (ii) the operators H and H are resolvent ...

متن کامل

On the computation of spectra and pseudospectra of self-adjoint and non-self-adjoint Schrödinger operators

We consider the long standing open question on whether one can actually compute spectra and pseudospectra of arbitrary (possibly non-self-adjoint) Schrödinger operators.We conclude that the answer is affirmative for “almost all” such operators, meaning that the operators must satisfy rather weak conditions such as the spectrum cannot be empty nor the whole plane. We include algorithms for the g...

متن کامل

Resolvents of self-adjoint extensions with mixed boundary conditions

We prove a variant of Krein’s resolvent formula for self-adjoint extensions given by arbitrary boundary conditions. A parametrization of all such extensions is suggested with the help of two bounded operators instead of multivalued operators and selfadjoint linear relations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009